SCHEME OF COURSE WORK

Course Details:

Course Title	: Embedded Systems-1 Lab							
Course Code	: 13CT1120	LTP	С	:0032				
Program:	: B.Tech.							
Specialization:	: Computer Science & Engineering, Information Technology							
Semester	: V							
Prerequisites	: No Prerequisite							
Courses to whic	h it is a prerequisite : Embedded Systems-2	Lab						

Course Outcomes (COs):

CO1	Implement number conversions
CO2	Create speed control programs
CO3	Write programs in assembly language
CO4	Design applications by interfacing system peripherals
CO5	Create serial communication buses

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S			S	Μ					
CO-2	М	S									
CO-3	S	S	М	S	S				М		
CO-4	S	S	S	М	М						
CO-5	S	S	S		S						

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching-Learning and Evaluation

Week	Topic / Contents	Course Outcomes	Sample Questions		Teaching- Learning Strategy	Assessment Method & Schedule
1	ELEMENTARY OPERATIONS: i. Multi precision Addition, Subtraction, and Multiplication. ii. Handling Fractional numbers iii. BCD-Binary Conversion examples iv. ASCII to BCD conversion v. Binary to ASCII conversion	CO1,2	1)	Write a program to implement fractional Division	=Lecture =Working Examples =Program Writing	
2	ELEMENTARY OPERATIONS: i. Multi precision Addition, Subtraction, and Multiplication. ii. Handling Fractional numbers iii. BCD-Binary Conversion examples iv. ASCII to BCD conversion v. Binary to ASCII conversion	CO1,2	1)	Write a program to implement BCD- Binary conversion	=Lecture =Program Writing	
3	ELEMENTARY OPERATIONS: i. Multi precision Addition, Subtraction, and Multiplication. ii. Handling Fractional numbers iii. BCD-Binary Conversion examples iv. ASCII to BCD conversion v. Binary to ASCII conversion	CO1,2	1) 2)	Write a program to implement ASCII-BCD and BCD-ASCII Conversion Write a program to implement 16-bit addition.	=Lecture =Program Writing	Day to day Analysis – 1
4	INPUT OUTPUT CONTROL PROGRAMMING: i. Controlling the external logical switching, for DC motors, Steppers ii. Clock generation and timing using Timers ad Counters	CO1,2,3	1)	Write a program to implement stepper motor	=Lecture =Program Writing	Lab Internal – 1 (Week-9)
5	INPUT OUTPUT CONTROL PROGRAMMING: iii. Pulse width modulation s for DAC application. iv. Capture control of external events	CO1,2	1)	Write a program to implement capture and compare mode of operations	=Lecture =Program Writing	
6	ANALOG TO DIGITAL CONVERTERS: Usage of multiplexed channels for in fast data acquisition and storage. Learn about acquisition speed, and waveform storage by sampling. Interrupt driven data acquisition.	CO1,2	1)	Write a program to implement square wave generation	=Lecture =Program Writing	
7	PROGRAMMING USING BUILT IN TIMERS: i. As Event Timers ii. As fast Counters	CO1,2	1)	Write a program to implement timer and counter operations	=Lecture =Program Writing	
8	PROGRAMMING USING BUILT IN TIMERS: iii. Frequency Generation iv. Simple programs to generate FSK	CO1,2	1)	Write a program to implement frequency square wave generation	=Lecture =Program Writing	
10	CAPTURE CONTROL AND ITS APPLICATION EXAMPLES: i. Measurement of pulse width using I/O ii. Measurement of Duty cycle, power factor etc.	CO1,2	1)	Write a program to implement pulse width of 5Khz with 75% duty cycle	=Lecture =Program Writing	Day to day
11	CAPTURE CONTROL AND ITS APPLICATION EXAMPLES: iii. Measurement of velocity and acceleration. iv. Sensing touch.	CO1,2	1)	Write a program to implement velocity measurement and acceleration	=Lecture =Program Writing	Analysis – 2
12	SERIAL COMMUNICATION METHODS: i. USART and its programming	CO1,2	1)	Write a program to implement USART operation to transmit the character	=Lecture =Program Writing	
13	SERIAL COMMUNICATION METHODS: ii. SPI bus and its programming	CO1,2	1)	Write a program to implement SPI operation to transmit the character	=Lecture =Program Writing	– 2 (Week-16)
14	WAVE FORM GENERATION USING PWM METHODS: i. Generation of Sine wave	CO1,2	2)	Write a program to generate sine wave	=Lecture =Program Writing	

15	WAVE FORM GENERATION USING PWM METHODS: ii. Generation of FSK	CO1,2	 Write a program to generate FSK. 	=Lecture =Program Writing					
16	MID TEST-2								
17/18			END EXAM						